Numerical Solution of Nonlinear PDEs by Using Two-Level Iterative Techniques and Radial Basis Functions

author

Abstract:

‎Radial basis function method has been used to handle linear and‎ ‎nonlinear equations‎. ‎The purpose of this paper is to introduce the method of RBF to‎ ‎an existing method in solving nonlinear two-level iterative‎ ‎techniques and also the method is implemented to four numerical‎ ‎examples‎. ‎The results reveal that the technique is very effective‎ ‎and simple. The main property of the method lies in its‎ ‎flexibility and ability to solve nonlinear equations accurately‎ ‎and conveniently.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Using Chebyshev polynomial’s zeros as point grid for numerical solution of nonlinear PDEs by differential quadrature- based radial basis functions

Radial Basis Functions (RBFs) have been found to be widely successful for the interpolation of scattered data over the last several decades. The numerical solution of nonlinear Partial Differential Equations (PDEs) plays a prominent role in numerical weather forecasting, and many other areas of physics, engineering, and biology. In this paper, Differential Quadrature (DQ) method- based RBFs are...

full text

Numerical Solution of The Parabolic Equations by Variational Iteration Method and Radial Basis Functions

‎In this work‎, ‎we consider the parabolic equation‎: ‎$u_t-u_{xx}=0$‎. ‎The purpose of this paper is to introduce the method of‎ ‎variational iteration method and radial basis functions for‎ ‎solving this equation‎. ‎Also, the method is implemented to three‎ ‎numerical examples‎. ‎The results reveal‎ ‎that the technique is very effective and simple.

full text

Numerical Techniques Based on Radial Basis Functions

Radial basis functions are tools for reconstruction of mul-tivariate functions from scattered data. This includes, for instance, reconstruction of surfaces from large sets of measurements, and solving partial diierential equations by collocation. The resulting very large linear N N systems require eecient techniques for their solution, preferably of O(N) or O(N log N) computational complexity. ...

full text

THE COMPARISON OF EFFICIENT RADIAL BASIS FUNCTIONS COLLOCATION METHODS FOR NUMERICAL SOLUTION OF THE PARABOLIC PDE’S

In this paper, we apply the compare the collocation methods of meshfree RBF over differential equation containing partial derivation of one dimension time dependent with a compound boundary nonlocal condition.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 4 (FALL)

pages  277- 285

publication date 2017-11-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023